
Spring 2025 Data C100/C200 Final Reference Sheet
Pandas
Suppose df is a DataFrame; s is a Series. import pandas as pd

Function Description

df.shape Returns a tuple containing the number of rows and columns, in that order

df.index Returns the index (row labels) of df as an Index object

df[col] Returns the column labeled col from df as a Series

df.index[i] Returns the row label at position i from df's index

df[[col1, col2]] Returns a DataFrame containing the columns labeled col1 and col2

s.idxmax() Returns the index label of the first occurrence of the maximum value in Series s

s.astype(dtype) Returns a Series casted to the specified type dtype

s.loc[rows] / df.loc[rows, cols] Returns a Series/DataFrame with rows (and columns) selected by their index values

s.iloc[rows] / df.iloc[rows, cols] Returns a Series/DataFrame with rows (and columns) selected by their positions

s.isnull() / df.isnull() Returns boolean Series/DataFrame identifying missing values

s.fillna(value) / df.fillna(value) Returns a Series/DataFrame where missing values are replaced by value

s.isin(values) / df.isin(values) Returns a Series/DataFrame of booleans indicating if each element is in values.

df.drop(labels, axis) Returns a DataFrame without the rows or columns named labels along axis (either 0 or 1)

df.rename(index=None, columns=None) Returns a DataFrame with renamed columns from a dictionary index and/or columns

df.sort_values(by, ascending=True) Returns a DataFrame where rows are sorted by the values in columns by

s.sort_values(ascending=True) Returns a sorted Series

s.unique() Returns a NumPy array of the unique values of s in the order that they appear

s.value_counts() Returns the number of times each unique value appears in a Series

pd.merge(left, right, how='inner',
left_on=col1, right_on=col2)

Returns a DataFrame joining left and right on columns labeled col1 and col2. An inner join is performed
if how='inner', a left join is performed if how='left', a right join is performed if how='right', and a full

outer join is performed if how='outer'

left.merge(right, left_on=col1,

right_on=col2)

Returns a DataFrame joining left and right on columns labeled col1 and col2

df.pivot_table(values=None,

index=None, columns=None,
aggfunc='mean', fill_value=None)

Returns a DataFrame pivot table where columns are unique values from columns (column name or list),

and rows are unique values from index (column name or list); cells are collected values using aggfunc. If
values is not provided, cells are collected for each remaining column with multi-level column indexing.

df.set_index(col) Returns a DataFrame that uses the values in the column labeled col as the row index

df.reset_index() Returns a DataFrame that has row index 0, 1, etc., and adds the current index as a column

Let grouped = df.groupby(by) where by can be a column label or a list of labels

Function Description

grouped.count() Return a DataFrame containing the size of each group, excluding missing values

grouped.size() Return a Series containing size of each group, including missing values

grouped.mean()/.min()/.max() Return a Series/DataFrame containing mean/min/max of each group for each column, excluding missing values

grouped.first()/.last() Return a Series/DataFrame containing first/last entry of each group for each column, excluding missing values

grouped.filter(f)

grouped.agg(f)

Filters or aggregates using the given function f

Function Description

s.str.len() Returns a Series containing length of each string

Function Description

s.str[a:b] Returns a Series where each element is a slice of the corresponding string indexed from a (inclusive,

optional) to b (non-inclusive, optional)

s.str.lower()/s.str.upper() Returns a Series of lowercase/uppercase versions of each string

s.str.replace(pat, repl,
regex=False)

Returns a Series that replaces occurences of substrings matching pat with string repl. When
regex=False, pat is treated as a literal string; when regex=True, pat is treated as a RegEx pattern.

s.str.contains(pat) Returns a boolean Series indicating if a substring matching the regex pat is contained in each string

s.str.extract(pat) Returns a DataFrame of the first subsequence of each string that matches the regex pat. If pat contains

one group, then only the substring matching the group is extracted

s.str.split(pat=" ") Splits the strings in s at the delimiter pat (defaults to a whitespace). Returns a Series of lists, where each

list contains strings of the characters before and after the split.

s.str.findall(pat=" ") Find all occurrences of RegEx pattern pat in the Series s. Returns a Series of lists, where each list

contains all the matches found in the corresponding string.

Visualization

Seaborn: x and y are column names in a DataFrame data. import seaborn as sns

Function Description

sns.countplot(data=None, x=None) Create a barplot of value counts of variable x from data

sns.histplot(data=None, x=None, stat='count',
kde=False)
sns.displot(data=None, x=None, kind='hist', rug=False)

Creates a histogram of x from data, where bin statistics stat is one of 'count',
'frequency', 'probability', 'percent', and 'density'; optionally overlay a kernel
density estimator. displot is similar but can optionally overlay a rug plot and/or a

KDE plot

sns.kdeplot(data=None, x=None, y=None) Creates a contour plot of the 2D distribution of variables x and y from data. If only x

or y is provided, creates a 1D KDE plot of the provided variable instead.

sns.boxplot(data=None, x=None, y=None)

sns.violinplot(data=None, x=None, y=None)

Create a boxplot of a numeric feature (e.g., y), optionally factoring by a category

(e.g., x), from data. violinplot is similar but also draws a kernel density estimator

of the numeric feature

sns.scatterplot(data=None, x=None, y=None) Create a scatterplot of x versus y from data

sns.lmplot(data=None, x=None, y=None, fit_reg=True) Create a scatterplot of x versus y from data, and by default overlay a least-squares

regression line

sns.jointplot(data=None, x=None, y=None,
kind='scatter')

Combine a bivariate scatterplot of x versus y from data, with univariate density plots
of each variable overlaid on the axes; kind determines the visualization type for the

distribution plot, can be scatter, kde or hist

Regular Expressions
Operator Description Operator Description

. Matches any character except \n * Matches preceding character/group zero or more times

\ Escapes metacharacters ? Matches preceding character/group zero or one times

| Matches expression on either side of expression; has

lowest priority of any operator

+ Matches preceding character/group one or more times

Matplotlib: x and y are sequences of values. import matplotlib.pyplot as plt

Function Description

plt.plot(x, y) Creates a line plot of x against y

plt.scatter(x, y) Creates a scatter plot of x against y

plt.hist(x, bins=None) Creates a histogram of x; bins can be an integer or a sequence

plt.bar(x, height) Creates a bar plot of categories x and corresponding heights height

Operator Description Operator Description

\d, \w, \s Predefined character group of digits (0-9), alphanumerics

(a-z, A-Z, 0-9, and underscore), or whitespace,

respectively

^, $ Matches the beginning and end of the line, respectively

\D, \W, \S Inverse sets of \d, \w, \s, respectively () Capturing group used to create a sub-expression

{m} Matches preceding character/group exactly m times [] Character class used to match any of the specified

characters or range (e.g. [abcde] is equivalent to [a-e])

{m, n} Matches preceding character/group at least m times and at

most n times. If either m or n are omitted, set lower/upper

bounds to 0 and ∞, respectively

[^] Invert character class; e.g. [^a-c] matches all characters

except a, b, c

Modified lecture example for capture groups:

import re
lines = '169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET ... HTTP/1.1"'
re.findall(r'\[\d+\/(\w+)\/\d+:\d+:\d+:\d+ .+\]', lines) # returns ['Jan']

Function Description

re.match(pattern, string) Returns a match if zero or more characters at beginning of string matches pattern, else None

re.search(pattern, string) Returns a match if zero or more characters anywhere in string matches pattern, else None

re.findall(pattern, string) Returns a list of all non-overlapping matches of pattern in string (if none, returns empty list)

re.sub(pattern, repl, string) Returns string after replacing all occurrences of pattern with repl

Modeling
Concept Formula Concept Formula

Variance, Correlation

 loss Linear regression estimate

of

 loss Least squares linear

regression

Empirical risk with loss

Ordinary Least Squares
Multiple Linear Regression Model: with design matrix , response vector , and predicted vector . If there are features plus a

bias/intercept, then the vector of parameters . The vector of estimates is obtained from fitting the model to the

sample .

Concept Formula Concept Formula

Mean squared error Normal equation

Least squares estimate,

if is full rank

Residual vector,

LASSO Regression

L1 Regularization

L1 Norm of

σ2
x

1

n

n

∑

i=1

(xi − x̄)2

r

r =
1

n

n

∑

i=1

xi − x̄

σx

yi − ȳ

σy

L1
L1(y, ŷ) =∣ y − ŷ ∣ y ŷ = θ0 + θ1x

L2
L2(y, ŷ) = (y − ŷ)2

θ̂0 = ȳ − θ̂1x̄ θ̂1 = r
σy

σx

L

R(θ) =
1

n

n

∑

i=1

L(yi, ŷi)

Ŷ = Xθ X Y Ŷ p

θ = [θ0, θ1, … , θp]T ∈ R
p+1 θ̂

(X,Y)

R(θ) = 1
n ||Y − Xθ||2

2
X

T
Xθ̂ = X

T
Y

X θ̂ = (XT
X)−1

X
T
Y

e e = Y − Ŷ

1
n

||Y − Xθ||2
2 + α||θ||1 θ ∈ R

d ||θ||1 = ∑

d
j=1 |θj|

Concept Formula Concept Formula

Ridge Regression

L2 Regularization

Squared L2 Norm of

Ridge regression estimate

(closed form)

Multiple

(coefficient of

determination)

NumPy
Function Description

np.percentile(arr, q) Compute the q-th percentile of the a one-dimensional array arr.

Scikit-Learn
Package: sklearn.linear_model

Linear

Regression

Logistic

Regression Function(s) Description

✓ - LinearRegression(fit_intercept=True) Returns an ordinary least squares Linear Regression model.

- ✓ LogisticRegression(fit_intercept=True,
penalty='l2', C=1.0)

Returns an ordinary least squares Linear Regression model.

Hyperparameter C is inverse of regularization parameter, C = 1/λ.

✓ - LassoCV(), RidgeCV() Returns a Lasso (L1 Regularization) or Ridge (L2 regularization) linear

model, respectively, and picks the best model by cross validation.

✓ ✓ model.fit(X, y) Fits the scikit-learn model to the provided X and y.

✓ ✓ model.predict(X) Returns predictions for the X passed in according to the fitted model.

✓ ✓ model.predict_proba(X) Returns predicted probabilities for the X passed in according to the fitted

model. If binary classes, will return probabilities for both class 0 and 1.

✓ ✓ model.coef_ Estimated coefficients for the linear model, not including the intercept

term.

✓ ✓ model.intercept_ Bias/intercept term of the linear model. Set to 0.0 if

fit_intercept=False.

Package: sklearn.model_selection

Function Description

train_test_split(*arrays, test_size=0.2) Returns two random subsets of each array passed in, with 0.8 of the array

in the first subset and 0.2 in the second subset.

Probability
Let have a discrete probability distribution . has expectation over all possible values , variance

, and standard deviation .

For a binomial variable with trials and probability of success, the probability of successes is .

Notes Property of Expectation Property of Variance

 is a random variable.

 is a random variable, are

scalars.

 are random variables.

1
n

||Y − Xθ||2
2 + α||θ||2

2

θ ∈ R
d

||θ||2
2 = ∑

d
j=1 θ

2
j

θ̂ridge = (XT
X + nαI)−1

X
T
Y R2

R2 =
variance of fitted values

variance of y

X P(X = x) X E[X] = ∑x xP(X = x) x

Var(X) = E[(X − E[X])2] SD(X) = √Var(X)

Y n p k (

n
k)p

k(1 − p)n−k

X
E[X] = ∑

x

xP(X = x) Var(X) = E[(X − E[X])2] = E[X 2] − (E[X])2

X a, b ∈ R
E[aX + b] = aE[X] + b Var(aX + b) = a2Var(X)

X,Y
E[X + Y] = E[X] + E[Y] Var(X + Y) = Var(X) + Var(Y) + 2Cov(X,Y)

Notes Property of Expectation Property of Variance

 means that is

a Bernoulli random variable that

takes the value 1 with probability ,

and 0 otherwise.

 means that

is a Binomial random variable

representing the number of ones in

independent Bernoulli trials, each

with probability of 1.

Parameter Estimation and Gradient Descent
Parameter Estimation

Suppose for each individual with fixed input , we observe a random response , where is the true relationship and is random noise

with zero mean and variance .

For a new individual with fixed input , define our random prediction based on a model fit to our observed sample . The model risk is the

mean squared prediction error between and :

Suppose that input has features and the true relationship is linear with parameter . Then and

 for an estimate fit to the observed sample .

Gradient Descent

Let be an objective function to minimize over , with some optimal . Suppose is some starting estimate at , and is the

estimate at step . Then for a learning rate , the gradient update step to compute is

where is the partial derivative/gradient of with respect to , evaluated at .

SQL
SQL syntax:

WITH temp_tbl AS (
 SELECT ...
)
SELECT [DISTINCT]
 {* | expr [[AS] c_alias]
 {, expr [[AS] c_alias] ...}}
FROM tableref {, tableref}
[[INNER | LEFT] JOIN table_name
 ON qualification_list]
[WHERE search_condition]
[GROUP BY colname {, colname...}]
[HAVING search_condition]
[ORDER BY column_list]
[LIMIT number]
[OFFSET number of rows];

Syntax Description

SELECT column_expression_list List is comma-separated. Column expressions may include aggregation functions (MAX,

FIRST, COUNT, AVG, etc). AS renames columns. DISTINCT selects only unique rows.

FROM s INNER JOIN t ON cond Inner join tables s and t using cond to filter rows; the INNER keyword is optional.

FROM s LEFT JOIN t ON cond Left outer join of tables s and t using cond to filter rows.

FROM s, t Cross join of tables s and t: all pairs of a row from s and a row from t

WHERE a IN cons_list Select rows for which the value in column a is among the values in a cons_list.

ORDER BY RANDOM() LIMIT n Draw a simple random sample of n rows.

X ∼ Bernoulli(p) X

p

E[X] = p Var(X) = p(1 − p)

Y ∼ Binomial(n, p) Y

n

p

E[X] = np Var(X) = np(1 − p)

x Y = g(x) + ϵ g ϵ

σ2

x Ŷ (x) (X,Y)

Y Ŷ (x) E[(Y − Ŷ (x))2] = σ2 + (E[Ŷ (x)] − g(x))
2

+ Var(Ŷ (x)).

x p g θ ∈ R
p+1 Y = fθ(x) = θ0 +∑

p
j=1 θjxj + ϵ

Ŷ = f
θ̂
(x) θ̂ (X,Y)

L(θ,X,Y) θ θ̂ θ(0) t = 0 θ(t)

t α θ(t+1)

θ(t+1) = θ(t) − α∇θL(θ(t),X,Y)

∇θL(θ(t),X,Y) L θ θ(t)

Syntax Description

ORDER BY a, b DESC Order by column a (ascending by default) , then b (descending).

CASE WHEN pred THEN cons ELSE alt END Evaluates to cons if pred is true and alt otherwise. Multiple WHEN/THEN pairs can be

included, and ELSE is optional.

WHERE s.a LIKE 'p' Matches each entry in the column a of table s to the text pattern p. The wildcard %
matches at least zero characters.

LIMIT number Keep only the first number rows in the return result.

OFFSET number Skip the first number rows in the return result.

Principal Component Analysis (PCA)
The -th Principal Component of the matrix is defined as the -th column of defined by Singular Value Decomposition (SVD).

 is the SVD of if and are matrices with orthonormal columns and is a diagonal matrix. The diagonal entries of ,

, are known as singular values of , where for and .

Define the design matrix . Define the total variance of as the sum of individual variances of the features. The amount of variance

captured by the -th principal component is equivalent to , where is the number of datapoints.

Syntax Description

np.linalg.svd(X, full_matrices = True) SVD of X with shape (M, N) that returns u, s, vt, where s is

a 1D array of X's singular values. If full_matrices=True, u
and vt have shapes (M, M) and (N, N) respectively;

otherwise shapes are (M, K) and (K, N), respectively,
where K = min(M, N).

Classification and Logistic Regression

Logistic Regression Model: For input feature vector , , where . The estimate is the parameter that

minimizes the average cross-entropy loss on training data. For a single datapoint, define cross-entropy loss as ,

where is the probability that the response is 1.

Logistic Regression Classifier: For a given input and trained logistic regression model with parameter , compute .

Predict response with classification threshold as follows:

i X i V

X = USV T X U V T S S

[s1, … , sr, 0, … , 0] X si > sj i < j r = rank(X)

X ∈ R
n×p X p

i s2
i /n n

Confusion Matrix

Columns are the predicted values and rows are the actual classes .

True negative (TN) False Positive (FP)

False negative (FN) True Positive (TP)

ŷ y

ŷ = 0 ŷ = 1

y = 0

y = 1

Classification Performance

Suppose you predict datapoints.

Metric Formula Other Names

Accuracy

Precision

Recall/TPR True Positive Rate, Sensitivity

FPR False Positive Rate,

An ROC curve visualizes TPR vs. FPR for different thresholds .

n

TP+TN
n

TP
TP+FP

TP
TP+FN

FP
FP+TN

FPR = 1 − Specificity

T

x P̂θ(Y = 1|x) = σ(xTθ) σ(z) = 1/(1 + e−z) θ̂ θ

− [y log(p) + (1 − y) log(1 − p)]

p

x θ p = P̂(Y = 1|x) = σ(xTθ)

ŷ T

Clustering
K-Means Clustering: Pick an arbitrary k, and randomly place k “centers”, each a different color. Then repeat until convergence:

1. Color points according to the closest center (defined as squared distance).

2. Move center for each color to center of points with that color.

To evaluate a K-Means clustering, we minimize a loss function. Two common ones are:

Inertia: the sum of squared distances from each datapoint to its center. It is defined as , where is the total number of

datapoints, represents datapoint , and is 's closest center.

Distortion: the weighted sum of squared distances from each data point to its center. It is defined as , where

represents the total number of clusters. For each cluster , we sum the squared distances from each datapoint to it's center and divide

it by the total number of datapoints in that cluster, denoted as . We add up these weighted sums to obtain the final value.

Agglomerative Clustering: Assign each datapoint to its own cluster. Then, recursively merge pairs of clusters together until there are clusters

remaining.

Linkage Criteria:

Single: minimum distance between any two points in the two clusters.

Average: average of all pairwise distances between points in the two clusters.

Complete: maximum distance between any two points in the two clusters.

A datapoint's silhouette score is defined as , where is the mean distance to other points in its cluster, and is the

mean distance to points in its closest cluster.

ŷ = classify(x) = {

1 p ≥ T

0 otherwise

∑

N
i=1(xi − Ck)2 N

xi i Ck xi

∑

K
k=1

1
n
∑

n
i=1(xk,i − Ck)2 K

k xk,i Ck

n

k

S S = (B − A)/ max(A,B) A B

